Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 305
Filtrar
1.
Dent J (Basel) ; 12(4)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38668002

RESUMO

(1) Background: Non-surgical endodontic treatment has been shown to be clinically successful; however, clinical long-term data are scarce. This practice-based retrospective clinical investigation evaluated endodontic outcomes over 40 years and identified relevant clinical co-factors. (2) Methods: Two experienced dental practitioners in two different private dental practices treated 174 patients with 245 teeth from 1969 to 1993. After root canal obturation, either a new direct restoration (amalgam, resin composite, or glass-ionomer cement) or the re-cementation of a pre-existing prosthetic restoration or renewal of prosthetic restoration followed. Metal posts (operator A) or metal screws (operator B) were inserted when coronal substance loss was significant. The primary outcome (i.e., tooth survival) was achieved when the endodontically treated tooth was, in situ, painless and had full function at the end of the observation period. A secondary outcome, the impact of different prognostic factors on survival rate, was evaluated. (3) Results: The overall mean survival was 56.1% of all treated teeth after 40 years of clinical service, resulting in an annual failure rate of 1.1%. Most investigated clinical co-factors (jaw, tooth position, intracanal dressings, post/screw placement, and gender) showed no significant influence on survival. (4) Conclusions: Even with materials and techniques from the 1970s and 1980s, successful root canal treatment was achievable. Except for post-endodontic restorations, most of the evaluated factors had no significant influence on the clinical long-term survival of root canal-treated teeth.

2.
Nat Microbiol ; 9(4): 905-921, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38528146

RESUMO

Some viruses are rarely transmitted orally or sexually despite their presence in saliva, breast milk, or semen. We previously identified that extracellular vesicles (EVs) in semen and saliva inhibit Zika virus infection. However, the antiviral spectrum and underlying mechanism remained unclear. Here we applied lipidomics and flow cytometry to show that these EVs expose phosphatidylserine (PS). By blocking PS receptors, targeted by Zika virus in the process of apoptotic mimicry, they interfere with viral attachment and entry. Consequently, physiological concentrations of EVs applied in vitro efficiently inhibited infection by apoptotic mimicry dengue, West Nile, Chikungunya, Ebola and vesicular stomatitis viruses, but not severe acute respiratory syndrome coronavirus 2, human immunodeficiency virus 1, hepatitis C virus and herpesviruses that use other entry receptors. Our results identify the role of PS-rich EVs in body fluids in innate defence against infection via viral apoptotic mimicries, explaining why these viruses are primarily transmitted via PS-EV-deficient blood or blood-ingesting arthropods rather than direct human-to-human contact.


Assuntos
Líquidos Corporais , Vesículas Extracelulares , Vírus , Infecção por Zika virus , Zika virus , Feminino , Humanos , Fosfatidilserinas , Ligação Viral
3.
Sensors (Basel) ; 24(4)2024 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-38400333

RESUMO

(1) Background: Occupational fatigue is a primary factor leading to work-related musculoskeletal disorders (WRMSDs). Kinematic and kinetic experimental studies have been able to identify indicators of WRMSD, but research addressing real-world workplace scenarios is lacking. Hence, the authors of this study aimed to assess the influence of physical strain on the Borg CR-10 body map, ergonomic risk scores, and foot pressure in a real-world setting. (2) Methods: Twenty-four participants (seventeen men and seven women) were included in this field study. Inertial measurement units (IMUs) (n = 24) and in-shoe plantar pressure measurements (n = 18) captured the workload of production and office workers at the beginning of their work shift and three hours later, working without any break. In addition to the two 12 min motion capture processes, a Borg CR-10 body map and fatigue visual analog scale (VAS) were applied twice. Kinematic and kinetic data were processed using MATLAB and SPSS software, resulting in scores representing the relative distribution of the Rapid Upper Limb Assessment (RULA) and Computer-Assisted Recording and Long-Term Analysis of Musculoskeletal Load (CUELA), and in-shoe plantar pressure. (3) Results: Significant differences were observed between the two measurement times of physical exertion and fatigue, but not for ergonomic risk scores. Contrary to the hypothesis of the authors, there were no significant differences between the in-shoe plantar pressures. Significant differences were observed between the dominant and non-dominant sides for all kinetic variables. (4) Conclusions: The posture scores of RULA and CUELA and in-shoe plantar pressure side differences were a valuable basis for adapting one-sided requirements in the work process of the workers. Traditional observational methods must be adapted more sensitively to detect kinematic deviations at work. The results of this field study enhance our knowledge about the use and benefits of sensors for ergonomic risk assessments and interventions.


Assuntos
Doenças Profissionais , Sapatos , Masculino , Humanos , Feminino , Doenças Profissionais/diagnóstico , Ergonomia/métodos , Fatores de Risco , Fadiga
4.
Front Bioeng Biotechnol ; 12: 1350135, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38419724

RESUMO

Objective: Biomechanical Machine Learning (ML) models, particularly deep-learning models, demonstrate the best performance when trained using extensive datasets. However, biomechanical data are frequently limited due to diverse challenges. Effective methods for augmenting data in developing ML models, specifically in the human posture domain, are scarce. Therefore, this study explored the feasibility of leveraging generative artificial intelligence (AI) to produce realistic synthetic posture data by utilizing three-dimensional posture data. Methods: Data were collected from 338 subjects through surface topography. A Variational Autoencoder (VAE) architecture was employed to generate and evaluate synthetic posture data, examining its distinguishability from real data by domain experts, ML classifiers, and Statistical Parametric Mapping (SPM). The benefits of incorporating augmented posture data into the learning process were exemplified by a deep autoencoder (AE) for automated feature representation. Results: Our findings highlight the challenge of differentiating synthetic data from real data for both experts and ML classifiers, underscoring the quality of synthetic data. This observation was also confirmed by SPM. By integrating synthetic data into AE training, the reconstruction error can be reduced compared to using only real data samples. Moreover, this study demonstrates the potential for reduced latent dimensions, while maintaining a reconstruction accuracy comparable to AEs trained exclusively on real data samples. Conclusion: This study emphasizes the prospects of harnessing generative AI to enhance ML tasks in the biomechanics domain.

5.
J Infect Dis ; 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38195212

RESUMO

Licensed vaccines against the Middle East respiratory syndrome coronavirus (MERS-CoV), an emerging pathogen of concern, are lacking. The Modified Vaccinia virus Ankara vector-based vaccine MVA-MERS-S, expressing the MERS-CoV-spike glycoprotein (MERS-S), is one of three candidate vaccines in clinical development and elicits robust humoral and cellular immunity. Here, we identified for the first time a MERS-S-specific CD8+ T-cell epitope in an HLA-A*03:01/HLA-B*35:01-positive vaccinee using a screening assay, intracellular cytokine staining, and in silico epitope prediction. As evidence from MERS-CoV infection suggests a protective role of long-lasting CD8+ T-cell responses, the identification of epitopes will facilitate longitudinal analyses of vaccine-induced T-cell immunity.

6.
NPJ Vaccines ; 9(1): 20, 2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38278816

RESUMO

In response to the COVID-19 pandemic, multiple vaccines were developed using platforms such as viral vectors and mRNA technology. Here, we report humoral and cellular immunogenicity data from human phase 1 clinical trials investigating two recombinant Modified Vaccinia virus Ankara vaccine candidates, MVA-SARS-2-S and MVA-SARS-2-ST, encoding the native and the prefusion-stabilized SARS-CoV-2 spike protein, respectively. MVA-SARS-2-ST was more immunogenic than MVA-SARS-2-S, but both were less immunogenic compared to licensed mRNA- and ChAd-based vaccines in SARS-CoV-2 naïve individuals. In heterologous vaccination, previous MVA-SARS-2-S vaccination enhanced T cell functionality and MVA-SARS-2-ST boosted the frequency of T cells and S1-specific IgG levels when used as a third vaccination. While the vaccine candidate containing the prefusion-stabilized spike elicited predominantly S1-specific responses, immunity to the candidate with the native spike was skewed towards S2-specific responses. These data demonstrate how the spike antigen conformation, using the same viral vector, directly affects vaccine immunogenicity in humans.

7.
Biomedicines ; 11(11)2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-38001893

RESUMO

The successful development of effective viral vaccines depends on well-known correlates of protection, high immunogenicity, acceptable safety criteria, low reactogenicity, and well-designed immune monitoring and serology. Virus-neutralizing antibodies are often a good correlate of protective immunity, and their serum concentration is a key parameter during the pre-clinical and clinical testing of vaccine candidates. Viruses are inherently infectious and potentially harmful, but we and others developed replication-defective SARS-CoV-2 virus-like-particles (VLPs) as surrogates for infection to quantitate neutralizing antibodies with appropriate target cells using a split enzyme-based approach. Here, we show that SARS-CoV-2 and Epstein-Barr virus (EBV)-derived VLPs associate and fuse with extracellular vesicles in a highly specific manner, mediated by the respective viral fusion proteins and their corresponding host receptors. We highlight the capacity of virus-neutralizing antibodies to interfere with this interaction and demonstrate a potent application using this technology. To overcome the common limitations of most virus neutralization tests, we developed a quick in vitro diagnostic assay based on the fusion of SARS-CoV-2 VLPs with susceptible vesicles to quantitate neutralizing antibodies without the need for infectious viruses or living cells. We validated this method by testing a set of COVID-19 patient serum samples, correlated the results with those of a conventional test, and found good sensitivity and specificity. Furthermore, we demonstrate that this serological assay can be adapted to a human herpesvirus, EBV, and possibly other enveloped viruses.

9.
J Med Virol ; 95(8): e29032, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37581876

RESUMO

The circulating nucleocapsid (NCP) antigen of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is detectable in coronavirus disease-2019 (COVID-19) patients. To better understand the biology of disease severity, we investigated NCP clearance kinetics in hospitalized COVID-19 patients. Serum NCP was quantified using a commercial NCP-specific enzyme-linked immunoassay in hospitalized COVID-19 patients (n = 63) during their hospital stay. Results were correlated to COVID-19 disease severity, inflammation parameters, antibody response, and results of SARS-CoV-2 PCR from nasopharyngeal swabs. We demonstrate that NCP antigen levels in serum remained elevated in 21/45 (46.7%) samples from patients in intensive care units (ICU) after >8 days postdiagnosis. The proportion of ICU patients with detectable antigenemia declined only gradually from 84.6% to 25.0% over several weeks. This was in contrast to complete NCP clearance in all non-ICU patients after 8 days, and also in contrast to mucosal clearance of the virus as measured by PCR. Antigen clearance was associated with higher IgG against S1 but not NCP. Clearance of NCP antigenemia is delayed in >40% of severely ill COVID-19 patients. Thus, NCP antigenemia detected after 8 days post COVID-19 diagnosis is a characteristic of patients requiring intensive care. Prospective trials should further investigate NCP antigen clearance kinetics as a mechanistic biomarker.


Assuntos
COVID-19 , Humanos , COVID-19/diagnóstico , SARS-CoV-2 , Teste para COVID-19 , Cinética , Estudos Prospectivos , Anticorpos Antivirais , Nucleocapsídeo
10.
Structure ; 31(9): 1038-1051.e7, 2023 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-37392738

RESUMO

The Ebola virus matrix protein VP40 mediates viral budding and negatively regulates viral RNA synthesis. The mechanisms by which these two functions are exerted and regulated are unknown. Using a high-resolution crystal structure of Sudan ebolavirus (SUDV) VP40, we show here that two cysteines in the flexible C-terminal arm of VP40 form a stabilizing disulfide bridge. Notably, the two cysteines are targets of posttranslational redox modifications and interact directly with the host`s thioredoxin system. Mutation of the cysteines impaired the budding function of VP40 and relaxed its inhibitory role for viral RNA synthesis. In line with these results, the growth of recombinant Ebola viruses carrying cysteine mutations was impaired and the released viral particles were elongated. Our results revealed the exact positions of the cysteines in the C-terminal arm of SUDV VP40. The cysteines and/or their redox status are critically involved in the differential regulation of viral budding and viral RNA synthesis.


Assuntos
Ebolavirus , Proteínas da Matriz Viral , Ebolavirus/genética , Ebolavirus/metabolismo , Mutação , Oxirredução , Sudão , Proteínas da Matriz Viral/química , Proteínas da Matriz Viral/genética , Proteínas da Matriz Viral/metabolismo , Montagem de Vírus , Humanos
11.
J Funct Morphol Kinesiol ; 8(2)2023 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-37218862

RESUMO

This pilot study aimed to investigate the use of sensorimotor insoles in pain reduction, different orthopedic indications, and the wearing duration effects on the development of pain. Three hundred and forty patients were asked about their pain perception using a visual analog scale (VAS) in a pre-post analysis. Three main intervention durations were defined: VAS_post: up to 3 months, 3 to 6 months, and more than 6 months. The results show significant differences for the within-subject factor "time of measurement", as well as for the between-subject factor indication (p < 0.001) and worn duration (p < 0.001). No interaction was found between indication and time of measurements (model A) or between worn duration and time of measurements (model B). The results of this pilot study must be cautiously and critically interpreted, but may support the hypothesis that sensorimotor insoles could be a helpful tool for subjective pain reduction. The missing control group and the lack of confounding variables such as methodological weaknesses, natural healing processes, and complementary therapies must be taken into account. Based on these experiences and findings, a RCT and systematic review will follow.

12.
Viruses ; 15(5)2023 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-37243266

RESUMO

The COVID-19 pandemic caused significant human health and economic consequences. Due to the ability of SARS-CoV-2 to spread rapidly and to cause severe disease and mortality in certain population groups, vaccines are essential for controlling the pandemic in the future. Several licensed vaccines have shown improved protection against SARS-CoV-2 after extended-interval prime-boost immunizations in humans. Therefore, in this study, we aimed to compare the immunogenicity of our two Modified Vaccinia virus Ankara (MVA) based COVID-19 candidate vaccines MVA-SARS-2-S and MVA-SARS-2-ST after short- and long-interval prime-boost immunization schedules in mice. We immunized BALB/c mice using 21-day (short-interval) or 56-day (long-interval) prime-boost vaccination protocols and analyzed spike (S)-specific CD8 T cell immunity and humoral immunity. The two schedules induced robust CD8 T cell responses with no significant differences in their magnitude. Furthermore, both candidate vaccines induced comparable levels of total S, and S2-specific IgG binding antibodies. However, MVA-SARS-2-ST consistently elicited higher amounts of S1-, S receptor binding domain (RBD), and SARS-CoV-2 neutralizing antibodies in both vaccination protocols. Overall, we found very comparable immune responses following short- or long-interval immunization. Thus, our results suggest that the chosen time intervals may not be suitable to observe potential differences in antigen-specific immunity when testing different prime-boost intervals with our candidate vaccines in the mouse model. Despite this, our data clearly showed that MVA-SARS-2-ST induced superior humoral immune responses relative to MVA-SARS-2-S after both immunization schedules.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Animais , Camundongos , Pandemias , COVID-19/prevenção & controle , Vírus Vaccinia , Vacinação/métodos , Anticorpos Antivirais , Imunidade Celular , Imunidade Humoral
13.
Bioengineering (Basel) ; 10(5)2023 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-37237581

RESUMO

Postural deficits such as hyperlordosis (hollow back) or hyperkyphosis (hunchback) are relevant health issues. Diagnoses depend on the experience of the examiner and are, therefore, often subjective and prone to errors. Machine learning (ML) methods in combination with explainable artificial intelligence (XAI) tools have proven useful for providing an objective, data-based orientation. However, only a few works have considered posture parameters, leaving the potential for more human-friendly XAI interpretations still untouched. Therefore, the present work proposes an objective, data-driven ML system for medical decision support that enables especially human-friendly interpretations using counterfactual explanations (CFs). The posture data for 1151 subjects were recorded by means of stereophotogrammetry. An expert-based classification of the subjects regarding the presence of hyperlordosis or hyperkyphosis was initially performed. Using a Gaussian progress classifier, the models were trained and interpreted using CFs. The label errors were flagged and re-evaluated using confident learning. Very good classification performances for both hyperlordosis and hyperkyphosis were found, whereby the re-evaluation and correction of the test labels led to a significant improvement (MPRAUC = 0.97). A statistical evaluation showed that the CFs seemed to be plausible, in general. In the context of personalized medicine, the present study's approach could be of importance for reducing diagnostic errors and thereby improving the individual adaptation of therapeutic measures. Likewise, it could be a basis for the development of apps for preventive posture assessment.

14.
Viruses ; 15(4)2023 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-37112806

RESUMO

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) utilizes cellular trafficking pathways to process its structural proteins and move them to the site of assembly. Nevertheless, the exact process of assembly and subcellular trafficking of SARS-CoV-2 proteins remains largely unknown. Here, we have identified and characterized Rab1B as an important host factor for the trafficking and maturation of the spike protein (S) after synthesis at the endoplasmic reticulum (ER). Using confocal microscopy, we showed that S and Rab1B substantially colocalized in compartments of the early secretory pathway. Co-expression of dominant-negative (DN) Rab1B N121I leads to an aberrant distribution of S into perinuclear spots after ectopic expression and in SARS-CoV-2-infected cells caused by either structural rearrangement of the ERGIC or Golgi or missing interaction between Rab1B and S. Western blot analyses revealed a complete loss of the mature, cleaved S2 subunit in cell lysates and culture supernatants upon co-expression of DN Rab1B N121I. In sum, our studies indicate that Rab1B is an important regulator of trafficking and maturation of SARS-CoV-2 S, which not only improves our understanding of the coronavirus replication cycle but also may have implications for the development of antiviral strategies.


Assuntos
COVID-19 , Glicoproteína da Espícula de Coronavírus , Humanos , Glicoproteína da Espícula de Coronavírus/metabolismo , COVID-19/metabolismo , SARS-CoV-2/metabolismo , Complexo de Golgi/metabolismo , Proteínas rab1 de Ligação ao GTP/genética , Proteínas rab1 de Ligação ao GTP/análise , Proteínas rab1 de Ligação ao GTP/metabolismo
15.
Sports (Basel) ; 11(2)2023 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-36828322

RESUMO

The objectification of acute fatigue (during isometric muscle contraction) and cumulative fatigue (due to multiple intermittent isometric muscle contractions) plays an important role in sport climbing. The data of 42 participants were used in the study. Climbing performance was operationalized using maximal climbing-specific holding time (CSHT) by performing dead hangs. The test started with an initial measurement of handgrip strength (HGS) followed by three intermittent measurements of CSHT and HGS. During the test, finger flexor muscle oxygen saturation (SmO2) was measured using a near-infrared spectroscopy wearable biosensor. Significant reductions in CSHT and HGS could be found (p < 0.001), which indicates that the consecutive maximal isometric holding introduces cumulative fatigue. The reduction in CSHT did not correlate with a reduction in HGS over multiple consecutive maximal dead hangs (p > 0.35). Furthermore, there were no significant differences in initial SmO2 level, SmO2 level at termination, SmO2 recovery, and mean negative slope of the SmO2 saturation reduction between the different measurements (p > 0.24). Significant differences were found between pre-, termination-, and recovery- (10 s after termination) SmO2 levels (p < 0.001). Therefore, monitoring acute fatigue using athletes' termination SmO2 saturation seems promising. By contrast, the measurement of HGS and muscle oxygen metabolism seems inappropriate for monitoring cumulative fatigue during intermittent isometric climbing-specific muscle contractions.

16.
Mol Ther ; 31(2): 374-386, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36303436

RESUMO

Emerging and re-emerging viruses, such as Zaire Ebola virus (EBOV), pose a global threat and require immediate countermeasures, including the rapid development of effective vaccines that are easy to manufacture. Synthetic self-amplifying RNAs (saRNAs) attend to these needs, being safe and strong immune stimulators that can be inexpensively produced in large quantities, using cell-free systems and good manufacturing practice. Here, the first goal was to develop and optimize an anti-EBOV saRNA-based vaccine in terms of its antigen composition and route of administration. Vaccinating mice with saRNAs expressing the EBOV glycoprotein (GP) alone or in combination with the nucleoprotein (NP) elicited antigen-specific immune responses. GP-specific antibodies showed neutralizing activity against EBOV. Strong CD4+ T cell response against NP and GP and CD8+ T cell response against NP were detected by ELISpot assays. Intramuscular vaccination with saRNAs conferred better immune response than intradermal. Finally, mice vaccinated in a prime-boost regimen with saRNAs encoding both GP and NP or with GP alone survived an EBOV infection. In addition, a single dose of GP and NP saRNAs was also protective against fatal EBOV infection. Overall, saRNAs expressing viral antigens represent a promising vaccine platform.


Assuntos
Vacinas contra Ebola , Ebolavirus , Doença pelo Vírus Ebola , Animais , Camundongos , Doença pelo Vírus Ebola/prevenção & controle , Anticorpos Antivirais , Anticorpos Neutralizantes , Ebolavirus/genética , Glicoproteínas/genética , Vacinas contra Ebola/genética
17.
Front Nutr ; 10: 1303805, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38260064

RESUMO

Introduction: The use of single supplements as ergogenic aids to enhance performance in strength-oriented sports is widespread among athletes (74%). The aim of this study was to increase knowledge about the combined effects of caffeine and L-arginine dietary supplements on performance. Methods: In this double-blind, randomized and counterbalanced crossover study, 29 participants (age: 23.2 ± 3.6 yr.; height: 181.0 ± 7.6 cm; weight: 77.0 ± 8.8 kg) each underwent six trials. In each trial performance tests were conducted to examine the effects of the supplement combinations on maximum (NmMax) and averaged torque (NmM), maximum (JMax) and averaged work (JM), the blockwise mean values of torque and work, and rate of perceived exertion (RPE) during an isokinetic leg extension task (90°·s-1) with the right leg for two sets of 40 repetitions and a set rest of 3 min on a dynamometer. The first and second trials were used to familiarize the participants with the movements in the dynamometer and no supplements were taken. After this 2-week pre-test trial, the supplement combinations of placebo/placebo, caffeine/placebo (5 mg·kg-1), L-arginine/placebo (0.15 g·kg-1), and caffeine/L-arginine (5 mg·kg-1 + 0.15 g·kg-1) were ingested. Results: The main finding of this study is the absence of an ergogenic effect of the combined supplements caffeine and L-arginine during voluntary maximal isokinetic leg extensions, although an increase of 3.5% was noted for Nmmax compared to the placebo trial. However, the administration of caffeine was able to increase the NmMax of the quadriceps femoris muscle about 5.1% (p = 0.043). In addition, caffeine (4.2%, p = 0.026) and also L-arginine (4.2%, p = 0.040) significantly increased NmM over a complete set. No single or combined supplement had an effect on muscle fatigue looking at the blockwise mean values of torque and work or RPE (all p > 0.05). Conclusion: The combination of caffeine and L-arginine was not superior to the isolated intake of both supplements in a strength-based exercise and a synergistic effect was absent.

18.
PNAS Nexus ; 1(2)2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-36382127

RESUMO

Neutralizing antibodies (NAbs), and their concentration in sera of convalescents and vaccinees are a correlate of protection from COVID-19. The antibody concentrations in clinical samples that neutralize SARS-CoV-2 are difficult and very cumbersome to assess with conventional virus neutralization tests (cVNTs), which require work with the infectious virus and biosafety level 3 containment precautions. Alternative virus neutralization tests currently in use are mostly surrogate tests based on direct or competitive enzyme immunoassays or use viral vectors with the spike protein as the single structural component of SARS-CoV-2. To overcome these obstacles, we developed a virus-free, safe and very fast (4.5 h) in vitro diagnostic test based on engineered yet authentic SARS-CoV-2 virus-like-particles (VLPs). They share all features of the original SARS-CoV-2 but lack the viral RNA genome and thus are non-infectious. NAbs induced by infection or vaccination, but also potentially neutralizing monoclonal antibodies can be reliably quantified and assessed with ease and within hours with our test, because they interfere and block the ACE2-mediated uptake of VLPs by recipient cells. Results from the VLP neutralization test (VLPNT) showed excellent specificity and sensitivity and correlated very well with a cVNT using fully infectious SARS-CoV-2. The results also demonstrated the reduced neutralizing capacity of COVID-19 vaccinee sera against variants of concern of SARS-CoV-2 including omicron B.1.1.529, BA.1.

19.
J Funct Morphol Kinesiol ; 7(4)2022 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-36412757

RESUMO

Handgrip strength (HGS) appears to be an indicator of climbing performance. The transferability of HGS measurements obtained using a hand dynamometer and factors that influence the maximal climbing-specific holding time (CSHT) are largely unclear. Forty-eight healthy subjects (27 female, 21 male; age: 22.46 ± 3.17 years; height: 172.76 ± 8.91 cm; weight: 69.07 ± 12.41 kg; body fat: 20.05% ± 7.95%) underwent a maximal pull-up test prior to the experiment and completed a self-assessment using a Likert scale questionnaire. HGS was measured using a hand dynamometer, whereas CSHT was measured using a fingerboard. Multiple linear regressions showed that weight, maximal number of pull-ups, HGS normalized by subject weight, and length of the middle finger had a significant effect on the maximal CSHT (non-dominant hand: R2corr = 0.63; dominant hand: R2corr = 0.55). Deeper exploration using a machine learning model including all available data showed a predictive performance with R2 = 0.51 and identified another relevant parameter for the regression model. These results call into question the use of hand dynamometers and highlight the performance-related importance of body weight in climbing practice. The results provide initial indications that finger length may be used as a sub-factor in talent scouting.

20.
J Clin Invest ; 132(24)2022 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-36301637

RESUMO

The SARS-CoV-2 spike (S) glycoprotein is synthesized as a large precursor protein and must be activated by proteolytic cleavage into S1 and S2. A recombinant modified vaccinia virus Ankara (MVA) expressing native, full-length S protein (MVA-SARS-2-S) is currently under investigation as a candidate vaccine in phase I clinical studies. Initial results from immunogenicity monitoring revealed induction of S-specific antibodies binding to S2, but low-level antibody responses to the S1 domain. Follow-up investigations of native S antigen synthesis in MVA-SARS-2-S-infected cells revealed limited levels of S1 protein on the cell surface. In contrast, we found superior S1 cell surface presentation upon infection with a recombinant MVA expressing a stabilized version of SARS-CoV-2 S protein with an inactivated S1/S2 cleavage site and K986P and V987P mutations (MVA-SARS-2-ST). When comparing immunogenicity of MVA vector vaccines, mice vaccinated with MVA-SARS-2-ST mounted substantial levels of broadly reactive anti-S antibodies that effectively neutralized different SARS-CoV-2 variants. Importantly, intramuscular MVA-SARS-2-ST immunization of hamsters and mice resulted in potent immune responses upon challenge infection and protected from disease and severe lung pathology. Our results suggest that MVA-SARS-2-ST represents an improved clinical candidate vaccine and that the presence of plasma membrane-bound S1 is highly beneficial to induce protective antibody levels.


Assuntos
COVID-19 , Vacinas Virais , Humanos , Camundongos , Animais , Imunogenicidade da Vacina , SARS-CoV-2/genética , Vacinas Virais/genética , COVID-19/prevenção & controle , Vírus Vaccinia/genética , Anticorpos Antivirais , Anticorpos Neutralizantes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...